目的 设计合成N-(4-甲基-3-((4-(吡啶-3-基)嘧啶-2-基)氨基)苯基)氨基脲衍生物,并对其体外抗肿瘤活性进行研究。方法 N-(2-甲基-5-硝基苯基)-4-(3-吡啶基)-2-嘧啶胺为起始原料,经还原、酰化、肼解及与异氰酸酯的反应,合成了目标化合物,采用MTT法研究了目标化合物对人乳腺癌细胞(MCF-7)和人肝癌细胞(HepG2)的体外抗肿瘤活性。结果 合成了13个新化合物,其结构经1H-NMR,13C-NMR 和HRMS表征。体外生物活性测试结果显示,大多数化合物具有一定的体外抗肿瘤活性,其中化合物5l活性最优,其对MCF-7、HepG2细胞的半数抑制浓度(IC50)分别为9.1、10.45 μmol·L-1,对正常肝细胞LO2的半数抑制浓度(IC50)为53 μmol·L-1,并且诱导细胞周期G2-M期阻滞。结论 该系列化合物具有较好的抗肿瘤活性,具有进一步研究的意义。
Abstract
OBJECTIVE To design and synthesize N-(4-methyl-3-((4-(pyridin-3-yl) pyrimidin-2-yl) amino) phenyl) hydrazinecarboxamides and investigate their in vitro antitumor activities. METHODS The target compounds were synthesized from N-(2-methyl-5-nitrophenyl)-4-(3-pyridyl)-2-pyrimidine amine through reduction, acylation, hydrazinolysis, and reaction with isocyanates. The synthesized compounds were screened for their anticancer potential against different cancer cells viz human breast (MCF-7) and human hepatoma cell (HepG2) cancer cell lines by MTT assay. RESULTS Thirteen novel compounds were obtained, and their structures were characterized by 1H-NMR, 13C-NMR and HRMS. In vitro bioassay indicated that most compounds showed antitumor activity. Compound 5l displayed the most potential anticancer activity against these cancer cell lines with IC50 value of 9.15 and 10.45 μmol·L-1 respectively, without obvious toxic effects on normal liver cells with IC50 value of 53 μmol·L-1, and it also induced G2/M cell cycle arrest. CONCULUSION The series of compunds show preferable antitumor activities, which are worthy of further study.
关键词
氨基脲 /
吡啶联嘧啶 /
抗肿瘤活性
{{custom_keyword}} /
Key words
semicarbazide /
pyridylpyrimidine /
antitumor activity
{{custom_keyword}} /
中图分类号:
R914.5
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZOU X N, JIA M M,WANG X, et al. Interpretation of the world cancer report 2020. Chin J Clin Thorac Cardiov Sur (中国胸心血管外科临床杂志),2021, 28(1):11-18.
[2] PAN F. Cancer prevention and control in New China. Chin J Mod Med (中国当代医药),2019, 26 (27):1-6.
[3] SHARMA P, ALLISIN J P. The future of immune checkpoint therapy. Science, 2015, 348(6230):56-61.
[4] WEISS S A, WOLCHOK J D, SZNOL M. Immunotherapy of melanoma:facts and hopes. Clin Cancer Res, 2019, 25(17):5191-5201.
[5] PETERS S, RECK M., SMIT E F, et al. How to make the best use of immunotherapy as frst-line treatment of advanced/metastatic non-small-cell lung cancer. Ann Oncol, 2019, 30(6):884-896.
[6] JIANG W, VON ROEMELING C A, CHEN Y, et al. Designing nanomedicine for immuno-oncology. Nat Biomed Eng, 2017, 1(2):29-39.
[7] JIANG W, WANG Y F, JENNIFER A WARGO, et al. Considerations for designing preclinical cancer immune nanomedicine studies. Nat Nanotechnol, 2020, 16(1):6-15.
[8] [HU H Y, WU J, YUAN J F, et al. Synthesis and cytotoxic activity of 4-substitued-1-(2-methyl-6-(pyridin-3-yl)-nicotinoyl) semicarbazides. Chin J Org Chem(有机化学), 2019, 39 (9):2507-2514.
[9] VIEGAS-JUNIOR C, DANUELLO A, BOLZANI V D S, et al. Molecular hybridization:a useful tool in the design of new drug prototypes. Curr Med Chem, 2007, 14(17):1829-1852.
[10] FANG Z Y, ZHENG S C, CHAN K F, et al. Design, synthesis and antibacterial evaluation of 2,4-disubstituted-6-thiophenyl-pyrimidines. Eur J Med Chem, 2019, 161:141-153.
[11] ZHANG Y, ZHANG L Y, WANG J K, et al. Design, synthesis and antitumor activity evaluation of 2,4,6-substitute pyrimidine derivatives. Chin J Org Chem, 2020, 40 (10):3050-3054.
[12] HOLY A, VOTRUBA I, MASOJIDKOVA M, et al. 6- pyrimidines with Antiviral Activity. J Med Chem, 2002, 45 (9):1918-1929.
[13] UNNISA A, ABOUZIED A S, BARATAM A, et al. Design, synthesis, characterization, computational study and in-vitro antioxidant and anti-inflammatory activities of few novel 6-aryl substituted pyrimidine azo dye. Arab J Chem, 2021, 14(12):141-153.
[14] AMATO G, ROELOFFS R, RIGDON G C, et al. N-Pyridyl and pyrimidine benzamides as KCNQ2/Q3 potassium channel openers for the treatment of epilepsy. ACS Med Chem Lett, 2011,2 (6):481-484.
[15] LANG D K, KAUR R, ARORA R, et al. Nitrogen-containing heterocycles as anticancer agents: an overview. Anticancer Agents Med Chem, 2020, 20(18):2150-2168.
[16] WANG Z W, JIANG Y, LIU F, et al. Microwave-induced rapid preparation of N,N'-disalicylhydrazine and its anti-HIV activity. Chin J Org Chem(精细化工中间体), 2014, 44 (3):33-36.
[17] El-SADEK M E, ABOUKULL M E, EI-SABBAGH O I, et al. Design, synthesis and cytotoxic activity of novel 1-aroyl-4-(2-chloroethyl)semicarbazides. Pharm Chem J, 2007, 41:188-192.
[18] YU Y Y, LV Y F, YANG M, et al. The synthesis and anti-inflammatory activity of N-bromoacetyl salicylhydrazide. Fine Spec Chem (精细与专用化学品), 2016, 24 (10):38-40.
[19] BASARAB G S, GALULLO V, DEGRACE N, et al. Synthesis of a tetrahydronaphthyridine spiropyrimidinetrione DNA gyrase inhibiting antibacterial agent-differential substitution at all five carbon atoms of pyridine. Org Lett, 2014, 16 (24):6456-6459.
[20] DONOHOE T J, JONES C R, KORNAHRENS A F, et al. Total synthesis of the antitumor antibiotic (±)-Streptonigrin:first-and second-generation routes for de novo pyridine formation using ring-closing metathesis. J Org Chem, 2013, 78 (24):12338-12350.
[21] ZHAO D M, WANG Q H, WANG C H, et al. Synthesis of tenatoprazole as antiulcer drug. Fine Spec Chem (中国药物化学杂志), 2006, 16 (6):360-362.
[22] HU H Y, ZHANG W D, WU J F, et al. Synthesis and antitumor activities of phenylpyridine substituted semicarbazides. Chin Pharm J (中国药学杂志), 2019,54 (12):947-952.
[23] ZHAO S X, CAO Y, CUI Z Z, et al. Synthesis and biological activity of 2-arylidene-N-(quinolin-6-yl)hydrazine-1-carboxamides. J Chem, 2020, 2020,(2):1-9.
[24] GUO R L, SHENG H J, ZHAO S X, et al. Synthesis and antitumor activities of N-hydroxy-5-(3-substituted ureido)-1H-indole-2-carboxamide derivatives. Chin Pharm J (中国药学杂志), 2020, 55 (15):1234-1242.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家级大学生创新创业训练计划项目资助;金华市科技局公益项目资助(2019-4-005,2020-4-088);宁波市自然科学基金项目资助(202003N4160)
{{custom_fund}}